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ABSTRACT

This paper presents the results of an investigation of target motion analysis
algorithms that are designed to cope with model uncertainty. First, some
standard recursive algorithms such as the cartesian extended Kalman filter,
modified polar extended Kalman filter, and cartesian unscented Kalman filter
are applied to a target motion analysis problem with model uncertainty, in
order to analyse the robustness of such algorithms in these conditions. Next,
some adaptive algorithms are investigated. They are the static multiple models
and the dynamic multiple models estimators, namely: two generalised pseudo
Bayes methods and the interacting multiple model method. In this paper, the
problem is restricted to a single sensor and a single non-manoeuvring target
that travels at constant velocity. Both static and dynamic sensor performances
are considered. For simplicity, only Gaussian measurement noise is considered.
Adaptive filters are shown to have promise: they can establish a useful bearing
standard deviation adaptively and robustly.
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Investigation of Target Motion Analysis in the Presence of
Model Uncertainty

Executive Summary

This work was carried out under the Task 07/093 for the Tracking and Data Fusion
subprogram within the Submarine Operations Branch at DSTO Stirling.

In this paper, the effect of model uncertainty in target motion analysis (TMA) per-
formance is investigated. This includes investigating the mismatch of bearing mean and
variances between the model and the system. The recursive bearings-only TMA algo-
rithms considered are the cartesian extended Kalman filter (CEKF), modified polar EKF
(MPEKF), and cartesian unscented Kalman filter (CUKF). Next, the designs of robust
TMA algorithms that are capable of tracking in the presence of model uncertainty are
explored. These are adaptive filters, namely the static multiple models (SMM) and the
dynamic multiple models estimators. The dynamic multiple models estimators considered
in this work are the generalised pseudo Bayes (GPB1 and GPB2) and the interacting
multiple model (IMM) algorithms.

The problem considered in this paper is restricted to an ownship with a single sensor
observing a single non-manoeuvring constant-velocity target. The ownship must manoeu-
vre for the algorithms to converge. Three scenarios are described, encompassing low to
high rates of bearing change, but only one of these is analysed in detail; the similar results
of the others are merely quoted.

The ownship (a submarine) uses passive sonar to detect a target (a ship or a sub-
marine). Two passive sensors onboard submarines that are especially used for tracking
are cylindrical and flank arrays. These are located at different places on the submarine,
resulting in a lowered performance for each in the relevant zone. The cylindrical array has
a blind arc behind the submarine from where it receives no data at all. The beamwidth
of the flank array is narrow to broadside and broad to endfire (front and behind the sub-
marine), giving poor endfire performance. In this paper, both static and dynamic sensor
performances are considered. We use a simple model for the dynamic sensor performance,
namely, two fixed bearing standard deviations: one for each half of the scenario. Also, for
simplicity, this paper only deals with Gaussian measurement noise.

For the problem with a static sensor such as a cylindrical array, results show that the
CEKF and the CUKF perform better than the MPEKF. We show that filters incorporating
approximately the same bearing mean and error as those of the system outperform filters
that are not matched in such a way. This suggests further investigation into adaptive filters
that estimate these parameters adaptively. In this paper, we focus solely on the design
of adaptive filters for eliminating bearing variance mismatch between the model and the
system.

The filter used may not “know” the measurement noises (variances and biases). When
considering static sensor performance, the adaptive filter (SMM) has been shown to be
promising for this kind of problem. The SMM can estimate a bearing standard deviation
adaptively, with results comparable to the performance of a filter that uses the same bear-
ing standard deviation as that of the system. For the case of dynamic sensor performance,
where the sensor detection ability might be degraded by hardware geometry, there are
great benefits to using the GPB1, GPB2, and IMM adaptive filters, because these can
estimate a bearing standard deviation adaptively and robustly. We show that they give

iii



DSTO–TR–2405

comparable performance to that of an ideal filter that uses the dynamic bearing standard
deviations of the system. The results obtained from the IMM and GPB2 are closer to
those of the ideal filter than the GPB1. The GPB1 gives a marginally smaller position
error than the GPB2 and the IMM; but the state covariances calculated using the IMM
and GPB2 are more acceptable under the statistical test for consistency. Note that the
GPB1 is marginally quicker to process than the IMM, while the GPB2 is easily the slowest.
For these reasons, the IMM appears slightly more promising to use.

We conclude that filters using a wrong bearing mean or error can produce a very poor
TMA. We show that adaptive filters can give improved performance in the case where the
filter has no knowledge of the measurement noise. This is a theoretical investigation and
it is proposed to investigate further with real data.

iv



DSTO–TR–2405

Authors

Tracy Quyen So Truong
Maritime Operations Division

Tracy Truong graduated from Curtin University of Technol-
ogy with a BSc in Mathematics and Computing in 1994, and a
BSc (Hons) in Mathematics (First Class) in 1995. She received
her MAppSc in Mathematics at RMIT University in 2005 with
a thesis titled “Exploration of a Rendezvous Search Problem
using Genetic Algorithms”.

She joined DSTO’s Air Operations Division in 1996, where
she supported the AP-3C, F/A 18, and F-111 operational tac-
tics studies using agent-oriented programming. In 2002 she
transferred to Maritime Operations Division, and was involved
in studies on effectiveness tactics for the Mk 48 torpedo, as-
sisted in studies on the Mk 46 torpedo defence, and provided
exercise analysis tools to the Submarine Operational Analysis
Group.

Recently she has been involved in projects for the Sub-
marine Operations Branch, namely target tracking and fusion
within the Tracking and Data Fusion subprogram, and assessing
the mental workload impact on the submarine Track Manager
within the Combat System Design subprogram.

Don Koks
Electronic Warfare and Radar Division

Don Koks completed a doctorate in mathematical physics at
Adelaide University in 1996, with a thesis describing the use of
quantum statistical methods to analyse decoherence, entropy
and thermal radiance in both the early universe and black hole
theory. He holds a BSc from the University of Auckland in pure
and applied mathematics and physics, and an MSc in physics
from the same university with a thesis in applied accelerator
physics (proton-induced X ray and γ ray emission for trace el-
ement analysis). He has worked on the accelerator mass spec-
trometry programme at the Australian National University in
Canberra, as well as in commercial internet development.

Currently he is a Research Scientist with the Maritime Sys-
tems group in the Electronic Warfare and Radar Division at
DSTO, specialising in geolocation, geospatial orientation, and
weapon–target allocation. He has published a book on math-
ematical physics called Explorations in Mathematical Physics:
the Concepts Behind an Elegant Language (Springer, 2006).

v



DSTO–TR–2405

vi



DSTO–TR–2405

Contents

1 Introduction 1

2 Bearings-Only TMA Problem for a Non-Manoeuvring Target 3

3 Performance Metrics 4

4 Simulations and Parameter Settings 6

5 Results for the Standard Filter Benchmarks 9

5.1 Mismatch of the Gaussian variances used in the model and the system . . 9

5.2 Mismatch of the Gaussian means used in the model and the system . . . 16

6 Adaptive Filters 19

6.1 Static Multiple Models Estimator (SMM) . . . . . . . . . . . . . . . . . . 19

6.2 Dynamic Multiple Models Estimator . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Generalised Pseudo Bayes Methods (GPB1 and GPB2) . . . . . . 21

6.2.2 Interacting Multiple Models Method (IMM) . . . . . . . . . . . . 25

7 Adaptive Filters Results 27

7.1 Static sensor performance case . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 Dynamic sensor performance case . . . . . . . . . . . . . . . . . . . . . . 31

8 Conclusion and Future Directions 36

9 Acknowledgements 37

References 37

vii



DSTO–TR–2405

viii



DSTO–TR–2405

1 Introduction

In this paper, the effect of model uncertainty in bearings-only target motion analysis
performance is investigated. Bearings-only target motion analysis (TMA) is vital to a
platform’s defence. TMA applications can be found in many systems, including sonar
systems, airborne warning and control, missile guidance, and anti radiation missiles. Tar-
get motion state estimation is used to track a target, avoid collisions, and to evade and
attack a target. The use of TMA considered in this report involves a submarine (ownship)
tracking a ship or submarine (target) by using passive sonar. The ownship uses a passive
system so as not to reveal its presence. Noisy bearings from the sound-radiating target are
processed to produce an estimate of the possibly moving target’s state (its position and
velocity). The use of a passive system means that target range is not explicitly available.

The passive sensors onboard submarines that are particularly used for tracking are the
cylindrical array and the flank array [1]. The cylindrical array is located in the submarine’s
bow, whereas the flank array comprises panels located along the submarine’s side. The
cylindrical array cannot detect anything behind the submarine. The beamwidth of the
flank array is narrow to broadside and broad to endfire (front and behind the submarine),
giving poor endfire performance. The flank array is affected by beamsteer direction, while
the cylindrical array is not. Thus when the flank array is used for tracking, the beam
pattern changes with beamsteer direction; it is narrow when steering to broadside (when
the direction of incoming signals is perpendicular to the array, giving the best base line
geometry), and broad when steering to endfire (when the incoming direction aligns with
the array, giving a poor base line). For this reason, the scenarios investigated in this paper
are divided into two classes: static sensor performance (e.g. using a cylindrical array) and
dynamic sensor performance (e.g. using a flank array). The dynamic sensor performance
considered in this report is a simple one, defined by splitting a scenario into halves. Each
half is then assigned a fixed bearing standard deviation.

Since 1960, the Kalman filter (KF) has been one of the most widely used methods for
tracking, due to its simplicity, optimality, tractability and robustness. But its application
to nonlinear systems can be fraught with difficulty. The most common approach for such
systems uses the extended Kalman filter (EKF), which linearises all nonlinear models so
that the traditional linear Kalman filter can then be applied. Though widely used, the
EKF is difficult to implement and tune; it is only reliable for systems that are almost
linear on the update interval [2, 3]. New nonlinear estimators have been developed, such
as the unscented Kalman filter (UKF). Unlike the EKF, the UKF does not approximate
nonlinear functions; instead, it parametrises means and covariances using a set of sampled
points.

Various algorithms have been used for the bearings-only TMA problem [4, 5, 6, 7]. In
particular, those used in this paper are the cartesian extended Kalman filter (CEKF) [8, 9],
the modified polar EKF (MPEKF) [9, 10], and the cartesian unscented Kalman filter
(CUKF) [2, 11, 12]. All of these algorithms are recursive. Unlike batch processing tech-
niques, recursive processing does not require some or all of the previous data to be stored
and reprocessed each time a new bearing is measured.

Sonar performance depends on many factors: signal frequency, signal-to-noise ratio,
bearing, bearing rate, array type, etc. These factors certainly influence the manufacturer’s
specification of the expected measurement noise of any particular sensor. Literature study-
ing bearing measurement noise is quite limited. In order to estimate the target state ac-

1



DSTO–TR–2405

curately, the estimator needs to know the statistical characteristics of the measurement
noise: its bias (mean) and spread (variance). But the above influences mean that this
information is not always known, and this leads to the design of adaptive filters that can
estimate and adjust the measurement noise parameters as new data arrives. In this report
we focus on finding the variances of measurement noises adaptively. We are also concerned
solely with single sensor/single target tracking.

Next, we explore the designs of adaptive filters that are capable of tracking in the
presence of model uncertainty. These are the static multiple models (SMM) and the
dynamic multiple models estimators: generalised pseudo Bayes methods (GPB1, GPB2)
and the interacting multiple model method (IMM). The algorithms considered are not new
but the applications to the problems considered here are new. The motivation for using
adaptive filters for this problem comes from [13], which shows promising results for using
the IMM to track manoeuvring targets whose motion is unknown.

The bearings-only TMA problem considered in this paper assumes a constant-velocity
target. To estimate the state of such a target from bearings-only measurements, it is
necessary for the ownship to manoeuvre at least once.1 On the other hand, dealing with
motion uncertainty of a target that moves unpredictably in different directions and with
variable speeds is much more difficult, and is not considered here.

The class of model uncertainty investigated in this paper is focused on the mismatch
of measurement noise between the model and the system, namely:

– Mismatch of the Gaussian means; i.e. the model assumes a zero-mean measurement
noise while the system measurement noise is non-zero mean, and

– Mismatch of the Gaussian variances.

In short, the primary investigations considered in this paper centre on these two questions:

– Benchmarking of the algorithms (CEKF, MPEKF, CUKF) to cope with different
degrees of mismatch as stated earlier. In other words, is the algorithm robust in this
circumstance?

– Can we design adaptive filters to recover from the model mismatch?

This paper is organised as follows.

Section 2 describes the bearings-only TMA problem for a non-manoeuvring target;

Section 3 describes the performance metrics used in our analysis;

Section 4 describes the simulations and parameter values;

Section 5 presents experimental results and discussions for the standard filters (CEKF,
MPEKF, CUKF);

Section 6 briefly describes the adaptive filters used in the simulations (SMM, GPB1,
GPB2, IMM);

1Note that it is not actually sufficient for the ownship to manoeuvre in order to estimate the target
state accurately. A complicated manoeuvre or set of manoeuvres might be needed, and the accuracy of
the state estimate can begin to degrade some time after the last manoeuvre finishes.
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Figure 1: A typical two-dimensional target–observer geometry

Section 7 presents experimental results and discussions for the adaptive filters (which
only use multiple CEKFs and CUKFs); and finally

Section 8 summarises our key results and provides some recommendations and future
research directions.

2 Bearings-Only TMA Problem for a

Non-Manoeuvring Target

The basic scenario considered in this paper is shown in Figure 1. This is a classical two-
dimensional bearings-only TMA problem comprised of a single non-manoeuvring target
and a single manoeuvring observer or ownship whose trajectory consists of two legs, each
with a different heading. The target has cartesian position

(
rtx, r

t
y

)
and moves with a

nearly constant velocity vector
(
vtx, v

t
y

)
. We write its state vector as

xt =
[
rtx, r

t
y, v

t
x, v

t
y

]T
, (2.1)

with superscript T denoting the transpose (i.e. all vectors are columns). Similarly, the
ownship state is written

xo =
[
rox, r

o
y, v

o
x, v

o
y

]T
, (2.2)

where the velocity vector is typically constant for each leg. The relative state vector is

x ≡ xt − xo ≡ [rx, ry, vx, vy]
T . (2.3)

Bearings-only tracking estimates the target state of a discrete time dynamic process
using the least mean squared error criterion. The target’s relative state at time index
k = 1, 2, . . . is modelled by

xk+1 = F kxk −Uk,k+1 + vk , (2.4)
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where the state transition matrix for a sampling interval T is

F k =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 . (2.5)

Also

Uk,k+1 =


rox(k + 1)− rox(k)− Tvox(k)
roy(k + 1)− roy(k)− Tvoy(k)

vox(k + 1)− vox(k)
voy(k + 1)− voy(k)

 , (2.6)

and the random variable vk models the process noise, assumed Gaussian:

vk ∼ N (0,Qk) , (2.7)

where

Qk = q


T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

 , q ≡ process noise intensity parameter. (2.8)

The bearing measurements are zk:

zk = hk(xk) + wk , (2.9)

where

hk(xk) = true bearing θ = tan−1
rx(k)

ry(k)
+ quadrant-dependent constant, (2.10)

and the random variable wk models the measurement noise, again assumed Gaussian:

wk ∼ N
(

0,
(
σ2θ
)
k

)
. (2.11)

3 Performance Metrics

In order to compare the performance of various tracking algorithms, 100 Monte Carlo
simulations were run for each algorithm, implemented using Matlab. Each set of runs used
the same seed for the random number generator; this ensured that the same set of bearings
was used for each set of runs. The use of averaging in the following performance metrics
significantly reduced the possibility of a single “lucky” run—one that is not representative
of a typical algorithm performance.

The performance metrics that were used in the analysis are as follows. Suppose there
are M independent Monte Carlo runs. First, the root mean square position error
(RMS) at time (index) k is defined as

RMSk =

√√√√ 1

M

M∑
i=1

[
rx(k)i − r̂x(k)i

]2
+
[
ry(k)i − r̂y(k)i

]2
, (3.1)
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where
(
rx(k)i, ry(k)i

)
and

(
r̂x(k)i, r̂y(k)i

)
are the true and estimated target positions at

time k in the ith Monte Carlo run.

Next, for a particular scenario and parameter choice, the root time-averaged mean
square position error (RTAMS) is calculated. Unlike the RMS error at time k, the
RTAMS takes multiple times into account and so is a more complete indicator of the
algorithm’s performance. It is defined as

RTAMS =

√√√√ 1

(tmax − l)M

tmax∑
k=l+1

M∑
i=1

[
rx(k)i − r̂x(k)i

]2
+
[
ry(k)i − r̂y(k)i

]2
, (3.2)

with tmax the final time of the scenario, and l a time after which the averaging is carried
out; hence tmax − l is the interval over which the averaging is carried out. Typically, l is
chosen to coincide with the end of the first ownship manoeuvre, or a time slightly later.
For example, l was set to the index appropriate for 18 minutes in the scenario of Figure 2
(refer to Table 1 and the discussion at the start of Section 5).

The norm of the bias position error at the final time is

1

M

√√√√{ M∑
i=1

rix − r̂ix

}2

+

{
M∑
i=1

riy − r̂iy

}2

, (3.3)

where
(
rix, r

i
y

)
and

(
r̂ix, r̂

i
y

)
are the true and estimated target positions at the final time

tmax in the ith Monte Carlo run.

The average normalised (state) estimation error squared (NEES) at time k is

NEESk =
1

M

M∑
i=1

[(
xik − x̂ik

)T (
P i
k|k
)−1 (

xik − x̂ik
)]
, (3.4)

where xik and x̂ik are the true and estimated state vectors [rx, ry, vx, vy]
T and [r̂x, r̂y, v̂x, v̂y]

T

respectively, and P i
k|k ≡ E

{
(xik − x̂ik)(x

i
k − x̂ik)

T
}

is the covariance matrix, at time k and

ith Monte Carlo run.

To satisfy the consistency criteria for a filter, the state errors should be zero mean
with magnitude commensurate with the state covariance as yielded by the filter. That is,
the state estimation errors are consistent with the filter-calculated covariances if NEESk
is within the following χ2 interval:

1

M

[
χ2
Mn

(α
2

)
, χ2

Mn

(
1− α

2

)]
, (3.5)

where Mn = 400 is the number of degrees of freedom for the χ2 test (M = 100 Monte
Carlo runs and n = 4 is the dimension of the x state vector), and α/2 is the “tails part”
of the two-sided (1− α)-probability concentrate region. (Further details can be found
in [14].)

In other words, assuming the state estimate to be unbiased, if NEESk lies within the
interval of (3.5), we deem the state covariance calculated by the filter to be acceptable.
Still assuming no bias, if NEESk is below the lower bound, we infer that the filter has
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overestimated the state covariance. Similarly, if NEESk is above the upper bound, we
infer that the filter has underestimated the state covariance:

NEESk, no bias

Pk|k overestimated Pk|k acceptable Pk|k underestimated

1
M
χ2
Mn

(
α
2

)
1
M
χ2
Mn

(
1− α

2

)

4 Simulations and Parameter Settings

Figure 2 shows the target–ownship geometry that we call “Scenario 1” and use throughout
this report. Ownship and target parameters are listed in Tables 1 and 2. Parameter
choices are straightforward, with the possible exception being those describing the ownship
manoeuvre. The ownship maintains a constant velocity until a time of 13 minutes, when
it changes to a heading of 20◦ with a turning rate of 0.5◦/s. It maintains this new heading
until the end of the observation period is reached after 30 minutes. Bearing measurements
are received every 20 seconds, with a nominal bearing accuracy of 1.5◦. The results
presented in the sections to follow are based on this scenario, in which the rate of increase
of target bearing as seen by the ownship peaks at 12◦/min. Two other scenarios with
lower and higher bearing rates (peaking at 2◦/min and 40◦/min respectively) are shown in
Figure 3. Results of these scenarios show trends similar to those of Scenario 1, and so are
not analysed further here.

Figure 4 shows typical bearings received versus time for each of the three scenarios.
The filters were initialised by the method proposed in Chapter 6 of [11], with settings listed
in Table 3. These settings were extracted from [11, 15, 16, 17] for range, speed, course and
process noise intensity respectively. For each Monte Carlo run, parameters were chosen
according to

initial target detection range r ∼ N (r̄, σ2r ) ,

initial target detection speed s ∼ N (s̄, σ2s) ,

initial target detection course c ∼ N (c̄, σ2c ) .

Other filter initialisations (such as initial state vector and its covariance) were obtained
from [11].

Table 1: Ownship parameters

Initial (x, y) position (0,0) km
Speed 7 kts constant
Heading 140◦ (0→ 13 minutes)

140◦→ 20◦ (13→ 17 minutes)
20◦ (17→ 30 minutes)

Rate of turn 0.5◦/s
Bearing measurement interval 20 s
Bearing measurement error σθ 1.5◦

6
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Table 2: Target parameters

Initial range 10 km
Speed 15 kts constant
Initial true bearing 60◦

Heading 195◦ constant
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Figure 2: Scenario 1: target–ownship geometry
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Figure 3: Scenarios 2 (left) and 3 (right). Their analyses are not presented
in this report, but gave results similar to those of Scenario 1

7



DSTO–TR–2405

Figure 4: Target bearings seen by ownship as a function of time for Scenar-
ios 1, 2 and 3

Table 3: Nominal filter parameters for a target

Range mean r̄ 15 km
Range standard deviation σr 6 km
Speed mean s̄ 16 kts
Speed standard deviation σs 7 kts
Course mean c̄ θ1 + 180◦,

where θ1 = initial bearing measurement

Course standard deviation σc 180◦/
√

12
Process noise intensity q 0.001× 10−6 km2/s3
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5 Results for the Standard Filter Benchmarks

Presented in this section are the results of a number of Monte Carlo runs aimed at bench-
marking the standard algorithms (CEKF, MPEKF, CUKF) in the presence of model mis-
match. Parameter settings for the non-manoeuvring target bearings-only TMA problem
are used, as described in the previous section.

For a representative run, the target position estimated using CEKF, MPEKF, and
CUKF algorithms together with the actual target position are plotted in Figure 5. Here,
the system and filters are assumed to have the same bearing measurement noise statistics:
zero-mean Gaussian with standard deviation 1.5◦. The performance of the filters—RMS
position error versus time—is presented in Figure 6. This figure shows that the ownship
completes its first manoeuvre after about 17 minutes, and slightly after this is when good
convergence to the ground truth begins. (Thus, referring to the discussion just after (3.2),
we set l = 18 minutes in that equation.) We are interested in the performance results
from this time onward, so focus on the results of the parameters described in (3.1)–(3.4).
In order to simulate a model mismatch, the following experiments are considered, with
results presented in Sections 5.1 and 5.2:

– Mismatch of the Gaussian variances used in the model and the system
(Section 5.1): Here the system bearing measurement noise is assumed Gaussian
with zero mean and varying standard deviation σθ = 1.5◦, 2.5◦, 3.5◦, 4.5◦. These
values were chosen partly with reference to [1] and partly from past data. For
each σθ, the filters (CEKF, MPEKF, CUKF) simulate a bearing noise as Gaussian,
each with zero mean and the following standard deviations: σθ/3, σθ/2, σθ, 2σθ, 3σθ
and, finally, 10σθ (to investigate filter performance for a very large bearing standard
deviation).

– Mismatch of the Gaussian means used in the model and the system
(Section 5.2): In this case the system bearing measurement noise is assumed Gaus-
sian with a fixed standard deviation σθ = 1.5◦, but now with a mean varying over
the values 0◦, 1◦, 2◦. The filters simulate a bearing noise as Gaussian with zero mean
and the same standard deviation as the system (σθ = 1.5◦).

5.1 Mismatch of the Gaussian variances used in the model
and the system

This section presents comparison results of the overall performance of each filter (CEKF,
MPEKF, CUKF) in the presence of bearing measurement variance mismatch between the
model and the system as stated in the immediately foregoing paragraphs.

In order to compare the overall performance of the filters, the following plots present
their data as a function of the standard deviation of the filters. Note that the “tick-mark
spacing”on the x axis of these plots has been set constant for convenience only, to facilitate
presenting the data more compactly.

Figure 7: RMS position error at the final time of t = 30 minutes,

Figure 8: RTAMS position error (an average over the 18→ 30 minutes interval),

Figure 9: norm of bias position error at t = 30 minutes, and

9
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Figure 10: log10 NEES at t = 30 minutes.

Figures 7–9 show that filters using approximately the same bearing standard deviation
as that of the system perform better than those using a smaller estimated error. These
figures also show that filters using a larger bearing standard deviation than that of the
system can perform better than those using the same bearing standard deviation, except
in regards to the NEES of Figure 10. We see on a further examination of this figure that
the average NEES for the CEKF and CUKF are also within the acceptable average bounds.

The acceptable average bounds are defined to be the average NEES bounds obtained from [14],
and are used throughout this paper. They specify the interval 1

M

[
χ2
Mn(α/2), χ2

Mn(1 − α/2)
]
.

In our case, M = 100 Monte Carlo runs, n = 4 counts the dimensions of the x state vector, and
α/2 = 2.5% for the two-sided 95% probability region. The interval of the acceptable average
bounds is thus 1

100

[
χ2
400(0.025), χ2

400(0.975)
]

= [3.46, 4.57].

Overall, taking into consideration error performance and NEES, we conclude that a filter
is superior if it uses the same bearing standard deviation as that of the system. We also
observe that in this case, the state covariances (components of NEES) that are calculated
using the CEKF and CUKF lie within the appropriate χ2 bounds, and so are more accept-
able than those of the MPEKF, which do not. Reference [18] shows that a filter—such
as our MPEKF—that estimates its covariance optimistically is likely to diverge. This
suggests that the CEKF and CUKF are more acceptable for our work than the MPEKF.
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(a) σθ = 1.5◦ (b) σθ = 2.5◦

(c) σθ = 3.5◦ (d) σθ = 4.5◦

Figure 7: RMS position error at 30 minutes versus filter bearing standard
deviation for several system bearing standard deviations σθ. Note that “std”
in each plot means σθ
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(a) σθ = 1.5◦ (b) σθ = 2.5◦

(c) σθ = 3.5◦ (d) σθ = 4.5◦

Figure 8: RTAMS position error versus filter bearing standard deviation for
several system bearing standard deviations σθ. Note that “std” in each plot
means σθ
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(a) σθ = 1.5◦ (b) σθ = 2.5◦

(c) σθ = 3.5◦ (d) σθ = 4.5◦

Figure 9: Norm of bias position error at 30 minutes versus filter bearing
standard deviation for several system bearing standard deviations σθ. Note
that “std” in each plot means σθ
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(a) σθ = 1.5◦ (b) σθ = 2.5◦

(c) σθ = 3.5◦ (d) σθ = 4.5◦

Figure 10: log10 NEES at 30 minutes versus filter bearing standard devia-
tion for several system bearing standard deviations σθ. The horizontal black
dashed lines across are the logs of the acceptable average bounds. Note that
“std” in each plot means σθ
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5.2 Mismatch of the Gaussian means used in the model and
the system

This section presents comparison results of the overall performance of each filter (CEKF,
MPEKF, CUKF) in the presence of bearing measurement mean mismatch between the
model and the system as described on page 9. That is, we consider Gaussian system bearing
measurement noises with means µ = 0◦, 1◦, 2◦, along with a fixed standard deviation
σθ = 1.5◦. The filters simulate a bearing noise as Gaussian with zero mean and the same
standard deviation (1.5◦) as the system.

In order to compare the overall performance of each filter having a bearing mean
mismatch between the model and the system, the following plots are presented:

Figure 11: RMS position error at the final time of t = 30 minutes,

Figure 12: RTAMS position error (an average over 18→ 30 minutes interval),

Figure 13: norm of bias position error at t = 30 minutes, and

Figure 14: log10 NEES at t = 30 minutes.

Overall, the plots show that if the mean of bearing measurement noise of the model is not
approximately equal to that of the system, a very poor TMA is obtained. So it is crucial
to have a filter that matches the bearing means of the model and system. This suggests
further research into filters that can estimate the bearing mean adaptively.

Figure 11: RMS position error at 30 minutes for filters with a bearing mean
of 0 ◦, and system bearing means of 0 ◦, 1 ◦, 2 ◦. Both system and filters have
σθ = 1.5 ◦
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Figure 12: RTAMS position error for filters with a bearing mean of 0 ◦, and
system bearing means of 0 ◦, 1 ◦, 2 ◦. Both system and filters have σθ = 1.5 ◦

Figure 13: Norm of bias position error at 30 minutes for filters with a
bearing mean of 0 ◦, and system bearing means of 0 ◦, 1 ◦, 2 ◦. Both system and
filters have σθ = 1.5 ◦
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Figure 14: log10 NEES at 30 minutes for filters with a bearing mean
of 0 ◦, and system bearing means of 0 ◦, 1 ◦, 2 ◦. Both system and filters have
σθ = 1.5 ◦. The horizontal black dashed lines across are the logs of the accept-
able average bounds
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6 Adaptive Filters

We first briefly describe the adaptive filters (i.e. multiple models techniques) used in this
paper. Further details can be found in [14, 19]. These filters are:

Static multiple models estimator (SMM), and

Dynamic multiple models estimators, namely: Generalised Pseudo Bayes methods
(GPB1 and GPB2) and the interacting multiple models method (IMM).

6.1 Static Multiple Models Estimator (SMM)

The system is assumed to obey a fixed one of r possible models, M1, . . . ,M r, where each
model assumes a different initial sensor bearing standard deviation. The filter then changes
its bearing standard deviation adaptively.

To combine the state estimates of the filters, we need to compute a weight (i.e. a model
probability) µjk at time k associated with each model M j . (These weights must always sum

to 1 across all models.) Let the initial weights µj0 follow a uniform distribution: e.g. for

four models, µ10 = µ20 = µ30 = µ40 = 0.25. The corresponding weights µjk at time k can be
calculated recursively using Bayes’ rule:

µjk =
p(zk|M j)µjk−1∑r
i=1 p(zk|M i)µik−1

, (6.1)

where p(zk|M j) is the likelihood of measurement zk given model M j :

p(zk|M j) =
1√

2πσ2j
exp
−
(
zk − ẑjk|k−1

)2
2σ2j

, (6.2)

where σ2j = Hj
kP

j
k|k−1H

j
k

T
+
(
σ2θ
)j

is the innovation variance for model M j . Here, Hj
k

and P j
k|k−1 are the linearised measurement matrix and predicted covariance for model M j

respectively,
(
σ2θ
)j

is the variance of the measured angle for model M j [see (2.11)], and

ẑjk|k−1 is the predicted bearing at time k for model M j .

The adaptive state estimate is obtained as a weighted sum of the estimates produced
by all of the models:

x̂k|k =

r∑
j=1

µjk x̂
j
k|k . (6.3)

Similarly, the adaptive covariance matrix may be computed as

P k|k =

r∑
j=1

µjk

[
P j
k|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T ]
. (6.4)

Figure 15 illustrates the SMM algorithm for r = 2 models. Implementation of the
algorithm is shown in Figure 16.
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M2

x̂1
2|2

x̂2
2|2

x̂2|2

M1

M2

x̂1
3|3

x̂2
3|3

x̂3|3

time tkt0 t1 t2 t3

Figure 15: Two-model example of SMM extracted from [14]. The models
are denoted M1 (dark blue path) and M2 (light blue path). Red paths point
to the final estimates that are output at each time step

At time k = 1, 2, . . . , for each model M j (j = 1, . . . , r):

Initialise filters at the previous time step with:

Model estimates: N
(
x̂jk−1|k−1,P

j
k−1|k−1

)
Model probabilities: µjk−1

Model matched filtering: For model M j (j = 1, . . . , r),

Model conditioned Kalman filter produces N
(
x̂jk|k,P

j
k|k
)

Likelihood for model M j : p(zk|M j) ≡ p
(
zk|M j , x̂jk−1|k−1,P

j
k−1|k−1

)
calculated in (6.2)

Model probability update: µjk =
p(zk|Mj)µjk−1∑r
i=1 p(zk|M i)µik−1

Combined estimate:

x̂k|k =
∑r

j=1 µ
j
k x̂

j
k|k

P k|k =
∑r

j=1 µ
j
k

[
P j
k|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T ]

Figure 16: SMM algorithm
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6.2 Dynamic Multiple Models Estimator

This type of estimator models the system as evolving according to one of r possible hy-
potheses or models. The system may only switch between models at the discrete times
t1, t2, . . . This switching is assumed to be Markov, so that the model in the period (tk, tk+1]
depends only on the model in the period (tk−1, tk]. For example, initially (t = t0) there
is just one model. Over the time interval (t0, t1], this single model branches r times, giv-
ing r models at time t1. Each of these models then branches again, producing a total of
r2 hypotheses over (t0, t2], and again a further splitting produces r3 hypotheses over (t0, t3].

This exponential growth in the number of models over time from a dynamic multiple
models estimator is called the “hypothesis growth problem”. The GPB1, GPB2, and IMM
methods were proposed as a means for controlling such unwanted growth. Each of these
estimators is now described in detail.

Let M i
k denote the regime in which the system follows model M i during the time

interval (tk−1, tk]. We assume that the probability pij of switching from model M i to

model M j is known and independent of the switching time: i.e. pij ≡ p{M j
k+1|M

i
k} is

independent of k for all k > 0, and
∑r

j=1 pij = 1 for all i = 1, . . . , r. Again, demand

the weights sum to 1 and initially follow a uniform distribution (i.e. µj0 is constant and
independent of model M j).

6.2.1 Generalised Pseudo Bayes Methods (GPB1 and GPB2)

One of the first methods proposed for controlling the growth of hypotheses for switching
systems was the generalised pseudo Bayes algorithm (GPB). In the GPB, hypotheses are
merged according to the manoeuvre history of the previous time steps. If several hy-
potheses have the same manoeuvre history over the previous n− 1 time intervals, then
these hypotheses are merged, and the algorithm is denoted GPBn. Thus the GPBn main-
tains rn hypotheses, which are collapsed to rn−1 hypotheses at each time step following
measurement update.

– For the GPB1, r models are merged to a single component every time step after
measurement update. All hypothesis histories that differ only in older models are
merged. All r filters are effectively reinitialised with the merged overall estimate
from the previous time step. GPB1 can be viewed as an approximation to the full
Bayesian hypothesis tree multiple model filter, which considers only the possible
models at the latest time instant and merges all possible model histories into one
hypothesis. The cycle then repeats. Figure 17 shows an example of r = 2 models;
Figure 18 presents the GPB1 algorithm.

– For the GPB2 an extra time step history is kept, and so r2 models are merged to
r models after each measurement update. The GPB2 considers models at the latest
two time instants, and merges all previous model sequences that end at the same
model. Thus the GPB2 maintains r model-matched estimates. For each of the
r estimates, r filters corresponding to the possible model transitions are run (a total
of r2 filters). The updated states that end at the same model are then merged, and
the cycle repeats. Figure 19 shows an example of r = 2 models; Figure 20 presents
the GPB2 algorithm.
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Figure 17: Two-model example of GPB1 [19]. The colours are the same as
those used in Figure 15

At time k = 1, 2, . . . :

Initialise filters at the previous time step with:

Combined estimate: N
(
x̂k−1|k−1,P k−1|k−1

)
Model probabilities: µjk−1 for model M j (j = 1, . . . , r)

Model matched filtering: For model M j (j = 1, . . . , r),

Model conditioned Kalman filter produces N
(
x̂jk|k,P

j
k|k
)

Likelihood Λjk = p
(
zk|M j

k , x̂k−1|k−1,P k−1|k−1
)
, where M j

k denotes
the regime in which the system follows model M j during the time
interval (tk−1, tk]

Model probability update:

µjk =
1

A
Λjk

r∑
i=1

pij µ
i
k−1 , where A ≡

r∑
j=1

[
Λjk

r∑
i=1

pij µ
i
k−1

]
Combined estimate:

x̂k|k =
r∑
j=1

µjk x̂
j
k|k

P k|k =
r∑
j=1

µjk

[
P j
k|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T ]

Figure 18: GPB1 algorithm extracted from [14, 19]
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Figure 19: Two-model example of GPB2 [19]. The colours are the same
as those used in Figure 15. The dotted lines at time t1 reflect the fact that
e.g. the seven estimates with subscript “ 1|1” are all created in a quick suc-
cession that does not depend on the time line; they can be considered as all
being created at time t1
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At time k = 1, 2, . . . , for each model M i (i = 1, . . . , r),

Initialise filters at the previous time step with:

Model estimates: N
(
x̂ik−1|k−1,P

i
k−1|k−1

)
Model probabilities: µik−1

Model matched filtering: For models M i,M j (i, j = 1, . . . , r),

With M j
k denoting the regime in which model M j applies during

the time interval (tk−1, tk], the model conditioned Extended
Kalman filter for M j

k takes N
(
x̂ik−1|k−1,P

i
k−1|k−1

)
and produces

N
(
x̂ijk|k,P

ij
k|k
)
.

Likelihood: Λijk = p
(
zk|M j

k , x̂
i
k−1|k−1,P

i
k−1|k−1

)
Model merging probabilities: With µijk−1|k the probability that M i

was in effect at time k − 1 given that M j is in effect at time k
conditioned on the data Zk,

µijk−1|k =
1

Aj
Λijk pij µ

i
k−1 ,

where Aj ≡
∑r

i=1 Λijk pij µ
i
k−1 .

Merging: For model M j (j = 1, . . . , r),

x̂jk|k =

r∑
i=1

µijk−1|k x̂
ij
k|k

P j
k|k =

r∑
i=1

µijk−1|k

[
P ij
k|k +

(
x̂ijk|k − x̂jk|k

)(
x̂ijk|k − x̂jk|k

)T ]
Model probability update: For model M j (j = 1, . . . , r),

µjk =
1

A

r∑
i=1

Λijk pij µ
i
k−1 =

Aj
A

where A ≡
∑r

j=1Aj .

Combined estimate (for output):

x̂k|k =

r∑
j=1

µjk x̂
j
k|k , P k|k =

r∑
j=1

µjk

[
P j
k|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T ]

Figure 20: GPB2 algorithm extracted from [14, 19]
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6.2.2 Interacting Multiple Models Method (IMM)

The IMM is essentially an approximation to the GPB2, but only requires r filters instead
of the GPB2’s r2 filters. Rather than perform the merging operation immediately after
measurement update, the IMM introduces a merging procedure termed an “interaction”
immediately after hypothesis branching, but before prediction. The mixture of assumed
Gaussian probability densities is approximated by a single Gaussian density via moment
matching. The merging process is therefore moved backwards by almost a full filter cycle.
Consequently, it is no longer required to carry out the prediction and measurement update
operations for r2 branching hypotheses, but only for the r merged hypotheses. Figure 21
shows an example with r = 2 models; Figure 22 presents the IMM algorithm.

x̂1
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0|0

x̂01
0|0

x̂02
0|0

M1

M2

x̂1
1|1

x̂2
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x̂1|1
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1|1

x̂02
1|1

M1

M2

x̂1
2|2

x̂2
2|2

x̂2|2

time tkt0 t1 t2

Figure 21: Two-model example of IMM [19]. The colours and use of the
dotted sections on the time axis are the same as used in previous figures
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At time k = 1, 2, . . . , for model M i (i = 1, . . . , r),

Initialise filters at the previous time step with:

Model estimate: N
(
x̂ik−1|k−1,P

i
k−1|k−1

)
Model probabilities: µik−1|k−1.

Mixing probabilities: For models M i,M j (i, j = 1, . . . , r), with
µijk−1|k−1 the probability that M i was in effect at k − 1 given that M j is in

effect at k conditioned on the data Zk−1 up to and including time k− 1,

µijk−1|k−1 =
1

Āj
pij µ

i
k−1|k−1 , where Āj ≡

r∑
i=1

pij µ
i
k−1|k−1

Mixing: For model M j (j = 1, . . . , r),

x̂0j
k−1|k−1 =

r∑
i=1

µijk−1|k−1 x̂
i
k−1|k−1

P 0j
k−1|k−1 =

r∑
i=1

µijk−1|k−1

[
P i
k−1|k−1 +

(
x̂ik−1|k−1 − x̂0j

k−1|k−1
)(
x̂ik−1|k−1 − x̂0j

k−1|k−1
)T ]

Model matched filtering: For model M j (j = 1, . . . , r),

Prediction:
x̂0j
k|k−1 = F j

k x̂
0j
k−1|k−1

P 0j
k|k−1 = F j

k P
0j
k−1|k−1 F

j
k

T
+ Qj

k

Update:
ẑk|k−1 = hk(x̂

0j
k|k−1) as in (2.10)

Hj
k =

∂hk(x)

∂x

∣∣
x=x̂0j

k|k−1

Sjk = Hj
k P

0j
k|k−1H

j
k

T
+
(
σ2θ
)j
k

Kj
k = P 0j

k|k−1H
j
k

T (
Sjk
)−1

vjk = zk − ẑk|k−1

x̂jk|k = x̂0j
k|k−1 + Kj

k v
j
k

P j
k|k =

(
I −Kj

kH
j
k

)
P 0j
k|k−1

Λjk ∼ N
(
vjk; 0, Sjk

)
Model probability update: For model M j (j = 1, . . . , r),

µjk|k = 1
AΛjk Āj where A ≡

∑r
i=1 Λik Āi.

Combined estimate (for output):

x̂k|k =

r∑
j=1

µjk|k x̂
j
k|k , P k|k =

r∑
j=1

µjk|k

[
P j
k|k +

(
x̂jk|k − x̂k|k

)(
x̂jk|k − x̂k|k

)T ]

Figure 22: IMM algorithm extracted from [19]
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7 Adaptive Filters Results

This section presents an analysis of whether the adaptive filters of Section 6 (SMM, GPB1,
GPB2, IMM) might be of benefit when a filter lacks knowledge of the measurement noises
(e.g. variance or biases). To this end, we investigate how to compute a filter bearing
standard deviation adaptively.

The scenario and parameters described in Section 4 are used here (we may recall
that the “true” sensor σθ = 1.5◦), except now the filters do not “know” this standard
deviation. The parameters defined in Section 6 and used specifically for adaptive filters
are summarised as follows:

– We use four models; i.e. r = 4 in Section 6. These models M j , j = 1, 2, 3, 4, use initial
sensor bearing standard deviations of 1.5◦, 2.5◦, 3.5◦, 4.5◦ respectively. That is,

σ j=1
θ = 1.5◦, σ j=2

θ = 2.5◦,

σ j=3
θ = 3.5◦, σ j=4

θ = 4.5◦.

– Initial uniform weights for each model are µ10 = µ20 = µ30 = µ40 = 0.25, and

– [pij ] =


0.85 0.05 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.05 0.85 0.05
0.05 0.05 0.05 0.85

 ,
where each row (but not column) of the matrix of pij is required to sum to 1. Note that the
pij are only used for the dynamic multiple models estimators: GPB1, GPB2, and IMM.

The NEES analysis at the end of Section 5.1 concluded that the CEKF and CUKF out-
perform the MPEKF in the presence of bearing measurement variance mismatch between
the model and the system. Because of this, we have restricted the following analysis to
adaptive filters using CEKFs (comparing these with the CEKF single-model result), and
then adaptive filters using CUKFs (comparing these with the CUKF single-model result).
We present results based on two classes of problem, as follows:

Section 7.1 deals with the static sensor performance case; hence the SMM is applicable
here.

Section 7.2 deals with the dynamic sensor performance case; hence GPB1, GPB2, and
IMM are applicable.

7.1 Static sensor performance case

This case deals with the SMM. We compare each standard filter (CEKF, CUKF) hav-
ing a bearing standard deviation matched to that of the system (which takes the val-
ues 1.5◦, 2.5◦, 3.5◦, 4.5◦ in turn) with the SMM (using multiple CEKFs and CUKFs).
We let the SMM determine its filter bearing standard deviation adaptively (again from
1.5◦→ 4.5◦). For brevity we only present the results for system bearing standard devia-
tions of 1.5◦ and 2.5◦, because the cases for 3.5◦ and 4.5◦ show similar trends.

A comparison of the effectiveness of the SMM with the standard filters is made as
follows. For each of the system bearing standard deviations, we plot
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Figure 23: model probabilities versus time (averaged over 100 Monte Carlo runs),

Figure 24: RMS position error versus time,

Figure 25: RTAMS position error (an average over the 18→ 30 minutes interval) versus
filter type,

Figure 26: norm of bias position error at 30 minutes versus filter type, and

Figure 27: NEES versus time.

The graph legends are annotated as follows:

CEKF denotes the standard CEKF,

SMM-CEKF denotes the adaptive filter SMM (using multiple CEKFs),

CUKF as for “CEKF” above, but now using the CUKF, and

SMM-CUKF as for “SMM-CEKF” above, but now using multiple CUKFs.

The results show that the SMM can estimate its bearing standard deviation adaptively;
that is, it matches the value to that of the system (Figure 23 shows higher probability for
this case). The SMM performance results are comparable to those of the filter that uses
a bearing standard deviation matched to the system. The CUKF performs slightly better
than the CEKF. Also, most of the NEES values fall inside the acceptable χ2 bounds.

(a) System σθ = 1.5◦ (b) System σθ = 2.5◦

Figure 23: SMM-CEKF model probabilities versus time for two sys-
tem bearing standard deviations, averaged over 100 Monte Carlo runs.
The SMM-CUKF shows similar trends and so is not shown here; M1–M4
denote models with bearing standard deviations of 1.5◦, 2.5◦, 3.5◦, 4.5◦ re-
spectively. In both plots, the model whose bearing standard deviation matches
that of the system soon becomes dominant, showing that the filter successfully
matches its bearing error to that of the system
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(a) System σθ = 1.5◦ (b) System σθ = 2.5◦

Figure 24: RMS position error versus time for two system bearing standard
deviations

(a) System σθ = 1.5◦ (b) System σθ = 2.5◦

Figure 25: RTAMS position error versus filter type for two system bearing
standard deviations

29



DSTO–TR–2405

(a) System σθ = 1.5◦ (b) System σθ = 2.5◦

Figure 26: Norm of bias position error at t = 30 minutes versus filter type
for two system bearing standard deviations

(a) System σθ = 1.5◦ (b) System σθ = 2.5◦

Figure 27: NEES versus time for two system bearing standard deviations.
The horizontal black dashed lines across are the acceptable χ2 bounds
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7.2 Dynamic sensor performance case

Here we consider the dynamic multiple models estimators: GPB1, GPB2, IMM. The
dynamic sensor performance is based on using two fixed bearing standard deviations, one
for each half of the scenario. We consider two cases:

– The first half scenario uses 1.5◦ and the second half scenario uses 2.5◦ standard
deviation; and

– The first half scenario uses 2.5◦ and the second half scenario uses 3.5◦ standard
deviation.

For each case of the dynamic sensor performance, we compare each ideal filter (using
CEKF—having a bearing standard deviation matched to that of the system—with the
adaptive filters (using multiple CEKFs).2 The adaptive filters determine their own best
value of the filter bearing standard deviation from the set {1.5◦, 2.5◦, 3.5◦, 4.5◦}.

In order to compare the effectiveness of the adaptive filters with each ideal filter, we plot

Figure 28: model probabilities versus time (averaged over 100 Monte Carlo runs),

Figure 29: RMS position error versus time,

Figure 30: RTAMS position error (an average over the 18→ 30 minutes interval) versus
filter type,

Figure 31: norm of bias position error at 30 minutes versus filter type, and

Figure 32: NEES versus time.

The graph legends use the following terms:

Ideal denotes the ideal filter (using CEKF),

GPB1 denotes the adaptive filter GPB1 (using multiple CEKFs),

GPB2 as for GPB1 above, but now using the adaptive filter GPB2 (with multiple CEKFs),
and

IMM as for GPB1 and GPB2 above, but now using the adaptive filter IMM (with multiple
CEKFs).

Our results indicate that the adaptive filters (GPB1, GPB2, IMM) can determine their
own bearing standard deviation with reasonable success. For example, Figure 28 shows
that the model weights for bearing errors equal to those of the system do attain some
dominance over competing weights over the course of the scenario, although this dominance
is not strong. That is, in Figure 28(a) we expect model M1 to become dominant in the first
half of the scenario, with model M2 dominating in the second half. This is mostly what
happens, although the model M2 domination is not overly pronounced. In Figure 28(b)
we expect model M2 to become dominant in the first half of the scenario, followed by

2Analogous results for the CUKF show similar trends to those of the CEKF and so are not presented
here.
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model M3 in the second half. The effect is less obvious here, and model M4 also becomes
prominent.

These filters show performance comparable to that of an ideal filter that uses the same
dynamic bearing standard deviations as those of the system. Figure 29 shows that the
IMM and GPB2 perform marginally more closely to the ideal filter than does the GPB1.
The GPB1 may be marginally better than the GPB2 and the IMM, giving slightly smaller
errors in Figures 29–31. Figure 32 shows that the state covariances calculated using the
IMM and GPB2 are more acceptable under the χ2 test for consistency (i.e. more NEES fall
inside the acceptable χ2 bounds), and are closer to those of an ideal filter. The computer
processing times required for running the IMM and GPB1 algorithms are roughly similar,
and are about half of the time required to run the GPB2 routine. For these reasons, the
IMM seems slightly more promising to use.

(a) System σθ = 1.5◦ then 2.5◦, GPB1 (b) System σθ = 2.5◦ then 3.5◦, GPB1

Figure 28: Model probabilities versus time for two dynamic system bearing
standard deviations: (a) 1.5◦ for the first half scenario and 2.5◦ for the
second half scenario (left), (b) 2.5◦ for the first half scenario and 3.5◦ for the
second half scenario (right) (GPB1 using CEKF only; the GPB2 and IMM
show similar trends and so are not shown here); M1–M4 denote models with
bearing standard deviations of 1.5◦, 2.5◦, 3.5◦, 4.5◦ respectively.
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(a) (b)

Figure 29: RMS position error versus time for each system with dynamic
bearing standard deviations: (a) 1.5◦ for the first half scenario and 2.5◦ for
the second half scenario, (b) 2.5◦ for the first half scenario and 3.5◦ for the
second half scenario (CEKF only)

(a) (b)

Figure 30: RTAMS position error (averaged over t = 18→ 30 minutes) for
all filters, for each system with dynamic bearing standard deviations: (a) 1.5◦

for the first half scenario and 2.5◦ for the second half scenario, (b) 2.5◦ for
the first half scenario and 3.5◦ for the second half scenario (CEKF only)
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(a) (b)

Figure 31: Norm of bias position error at 30 minutes for all filters, for
each system with dynamic bearing standard deviations: (a) 1.5◦ for the first
half scenario and 2.5◦ for the second half scenario, (b) 2.5◦ for the first half
scenario and 3.5◦ for the second half scenario (CEKF only)

(a) (b)

Figure 32: NEES versus time for each system with dynamic bearing stan-
dard deviations: (a) 1.5◦ for the first half scenario and 2.5◦ for the second
half scenario, (b) 2.5◦ for the first half scenario and 3.5◦ for the second
half scenario (CEKF only). The horizontal dashed lines are the acceptable
χ2 bounds
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Figure 33: CPU time per simulation run for the adaptive filters (CEKF
only)
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8 Conclusion and Future Directions

In this report we have presented a benchmark of existing bearings-only TMA algorithms
that are designed to cope with model uncertainty. The standard algorithms used were
CEKF, MPEKF, CUKF. The main thrust of the report was the design of algorithms to
cope with models mismatch: the adaptive filters SMM, GPB1, GPB2, IMM. These filters
were designed to be able to estimate and adjust the measurement noise parameters as new
data comes in.

In order to estimate the target state accurately, the estimator needs to know the
statistical characteristics of the measurement noise: its bias (mean) and spread (variance).
But this information tends to be blurred by factors such as frequency, signal-to-noise
ratio (SNR), bearing, bearing rate, and array type, so filters using a wrong bearing mean
or variance can give very poor TMA. We have concentrated on finding the variances
of measurement noises adaptively. The adaptive filters show promise in being able to
determine what bearing variance they should use. We stress that this is a theoretical
investigation, and propose to investigate further using real data.

We are also concerned solely with single sensor/single non-manoeuvring target tracking
(e.g. tracking a ship or a submarine). Both static and dynamic sensor performances were
considered. For simplicity, the measurement noise used was restricted to Gaussian.

Our key results are summarised as follows. They have been tested on three scenarios
encompassing low to high rates of bearing change:

– The CUKF and CEKF perform better than the MPEKF for our scenarios;

– Filters incorporating approximately the same bearing mean and error as those of the
system outperform filters that are not matched in such a way;

– Adaptive filters (that tune their own model of the bearing variance) show promise
for use.

Further work can be done in the following areas:

– As stated above, this work is a theoretical investigation. Future work aims to validate
using real data.

– We can model the dynamic sensor performance to be more realistic; e.g. rather
than use two fixed bearing standard deviations for each half of the scenario, we can
make the bearing standard deviation change progressively with time. This could be
implemented with a random walk model.

– We can also use the SNR to model the fluctuating bearing error distribution during
the simulation; e.g. a lower SNR suggests a long-range target and a higher SNR
suggests a short-range target. This information allows compilation of a look-up
table of standard deviation versus time.

– Non-Gaussian measurement noise can be modelled.

– Finally, the work with adaptive filters can be extended to the case of a manoeuvring
target.
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